您现在的位置是:首页>经验 > 正文
高中数学常考重点知识点总结 高中数学常考重点知识点介绍
2023-06-19 22:10:25【经验】
简介 1、基本初等函数正弦函数 sinθ=y/r余弦函数 cosθ=x/r正切函数 tanθ=y/x余切函数 cotθ=x/y正割函数 secθ=r/x余割函数 cscθ=r/y2、同角三角函数间的平方关系:si
1、基本初等函数
正弦函数 sinθ=y/r
余弦函数 cosθ=x/r
正切函数 tanθ=y/x
余切函数 cotθ=x/y
正割函数 secθ=r/x
余割函数 cscθ=r/y
2、同角三角函数间的平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
3、同角三角函数间积的关系:
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
4、同角三角函数间倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
5、利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。
反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,
(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间)。
(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间)。
(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。
6、求函数的极值:
设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。
可导函数的极值,可通过研究函数的单调性求得,基本步骤是:
(1)确定函数f(x)的定义域。
(2)求导数f(x)。
(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况。
(4)检查f(x)的符号并由表格判断极值。
7、求函数的值与最小值:
如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值。函数在定义域内的极值不一定,但在定义域内的最值是的。
求函数f(x)在区间[a,b]上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值。
(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的值与最小值。
8、解决不等式的有关问题:
(1)不等式恒成立问题(绝对不等式问题)可考虑值域。
f(x)(xA)的值域是[a,b]时,
不等式f(x)0恒成立的充要条件是f(x)max0,即b0;
不等式f(x)0恒成立的充要条件是f(x)min0,即a0。
f(x)(xA)的值域是(a,b)时,
不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。
(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。
9、奇偶性定义:
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(—x)=—f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(—x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
10、有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘。
(2)任何数同零相乘都得零。
(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。
相关文章
热门排行
热点内容
皮夹克可以熨烫吗 皮夹克能熨烫吗
清明能不能去别人家玩 清明能否去别人家玩
闺蜜昵称简短温柔 可爱的姐妹昵称
干苦笋干怎么做好吃 苦笋干的做法
煲鱼汤用什么鱼最好 煲鱼汤用哪种鱼最好
清蒸梭子蟹怎么做最好吃 清蒸梭子蟹的做法
滨字的网名霸气简约 滨字的网名好听的
馒头在冷藏室可以保存多久 馒头在冷藏室可以保存多长时间
大豆菜如何储存保鲜时间长 大豆菜怎样储存保鲜时间长
家常锅包肉的简单做法 锅包肉怎么做好吃
香菜腌制时间长了还能吃吗 香菜腌制时间长了还可以吃吗
客厅摆放方位风水禁忌 客厅的摆放禁忌有哪些
冬天起居需要注意什么饮食 冬季的生活起居应注意哪些内容
如何鉴别生熟矾宣 怎样辨别生宣和熟宣
桃胶煮多长时间 桃胶适合煮的时间是多长